Formalism

A tree-level amplitude in e+e- collisions can be expressed in terms of fermion strings of the form

#math164#
#tex2html_wrap_indisplay920#(p2, σ2)P-τ #tex2html_wrap_indisplay921#a1 #tex2html_wrap_indisplay922#a2 ... #tex2html_wrap_indisplay923#anu(p1, σ1)  , (1)
where p and σ label the initial e± four-momenta and helicities #math165#(σ = ±1), #math166##tex2html_wrap_inline929#ai = aμiγν and #math167#Pτ = #tex2html_wrap_inline931#(1 + τγ5) is a chirality projection operator #math168#(τ = ±1). The aμi may be formed from particle four-momenta, gauge-boson polarization vectors or fermion strings with an uncontracted Lorentz index associated with final-state fermions.

In the chiral representation the γ matrices are expressed in terms of 2×2 Pauli matrices σ and the unit matrix 1 as #mathletters50# giving

#math169#
#tex2html_wrap_indisplay938#a = #tex2html_wrap_indisplay939##tex2html_wrap_indisplay940##tex2html_wrap_indisplay941#,  ( #tex2html_wrap_indisplay942#a)± = aμσμ±  , (2)
The spinors are expressed in terms of two-component Weyl spinors as

#math170#
u = #tex2html_wrap_indisplay944##tex2html_wrap_indisplay945##tex2html_wrap_indisplay946#,  v = #tex2html_wrap_indisplay947#(v)+#tex2html_wrap_indisplay948#  (v)-#tex2html_wrap_indisplay949#  .#tex2html_wrap_indisplay950#3A (3)
The Weyl spinors are given in terms of helicity eigenstates #math171#χλ(p) with #math172#λ = ±1 by
#math173#
u(p, λ)± = (E±λ|#tex2html_wrap_indisplay957#|)1/2χλ(p)  ,  
      (4)
v(p, λ)± = ±λ(E#tex2html_wrap_indisplay961#λ|#tex2html_wrap_indisplay962#|)1/2χ-λ(p)